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It is shown that the wavelets which appear on the inertial wave form of the inner free 
surface of a fully spun-up cylindrical mass of liquid contained in a vertical, rapidly 
rotating and gyrating gyrostat are capillary waves. It is further shown that the 
interaction between these capillary waves and the excited inertial waves is not the 
mechanism which effects an observed two-period collapse (‘breakdown ’) and re- 
appearance of the free-surface inertial wave form. Rather, the two-period breakdown 
can be explained by the conjecture that it is a beat phenomenon arising from 
the interaction of two differently structured inertial wave modes, which have the 
same frequency a t  small amplitudes of oscillation of the gyrostat but which, owing 
to the dependence of the inertial mode frequency on the amplitude of the gyrostatic 
motion, have slightly different frequencies at  larger amplitudes of oscillation of the 
gyrostat. 

1. Introduction 
Stewartson (1959) showed that, if there is resonance between the nutational 

frequency of a liquid-filled top and the frequency of one of the inertial modes of the 
fully spun-up liquid contained in a cylindrical cavity in the spinning top, then the 
amplitude of motion of the top may grow. Using an inviscid analysis, he derived an 
easily calculable expression for the amplitude growth rate of the top. We at  the 
Ballistic Research Laboratories, noting the relevance of the Stewartson analysis to the 
stability problems of many liquid-filled projectiles, have been continually astonished 
(and pleased !) at the experimental accuracy of that small amplitude expression for 
the growth rate. However, as G. N. Ward, in the appendix to the Stewartson paper, 
pointed out, that expression fails to agree with measurements once the amplitude of 
motion of the top exceeds two or three degrees. 

While verifying that a gyrostat, i.e. a gyroscope with the pivot point located at  the 
centre of mass, containing a cylindrical cavity partially filled with a liquid (Karpov 
1965) also may exhibit this anomalous amplitude growth rate when the amplitude of 
motion exceeds only a few degrees, we stroboscopically observed the free surface 
(figure 1)  of the spinning liquid in the gyrostat with the hope of resolving the anomaly. 
We noted, with great surprise, that a t  these ‘large’ amplitudes two phenomena 
occurred: (i) many wavelets, i.e. ripples, appeared superimposed on the inertial wave 
form of the free surface (figure 1 ) ;  (ii) multi-periodically (depending on the geometry 
of the cavity and the percentage of fill) the free surface ‘broke down’, i.e. the wave 
form continually disappeared (the free surface degenerating into an axisymmetric 
cylinder) t,hen reappeared, as shown in figure 1.  Note an anomaly of the breakdown 
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FIGURE 1. Configurations of the free surface of the j = 1 inertial wave (starting from the 
quiescent state and with superposed capillary waves) during successive major (T) and minor (7) 

breakdown periods. 

process in this figure in that there seem to be two breakdown periods, the larger period 
T corresponding to breakdown a t  a rather large amplitude, the shorter period r 
corresponding to breakdown at a small amplitude. Scott (1975), having found that 
‘beating’ between two different inertial modes could not account for the breakdown, 
then unsuccessfully attempted to explain it in terms of interactions between inertial 
and Rossby waves. No mention was made of the wavelets in that reference for two 
reasons: (i) it was not known at  the time what they were; (ii) whatever they were, they 
were conjectured to be irrelevant to the breakdown phenomenon. 

In  view of the well-known interaction between capillary and gravity waves (Lamb 
1932, pp. 456-470), we are now somewhat embarrassed over the failure of the Scott 
reference to mention those wavelets, to conjecture that they might be capillary waves 
and, further, to conjecture that the free-surface breakdown might be due to an inter- 
action between these capillary waves and the ever-present inertial waves. As an 
afterthought, this last conjecture seemed not unreasonable, for if the presence of 
capillary waves on the free surface of the rotating liquid could alter the inertial mode 
frequency without altering the gyrostatic frequency, a state of resonance would no 
longer exist between one of the inertial modes and the gyrostatic motion. Hence the 
altered inertial mode would die with the concomitant disappearance of the inertial 
wave form. Then, since the free surface would be a concentric cylinder, surface tension 
could no longer induce capillary waves, and the ‘pure’ inertial mode could then be 
re-excited. However, as we shall show in the analysis, calculations of the influence of 
surface tension on the dominant inertial mode frequency gave an effect an order of 
magnitude too small. It then occurred to us that the periodic breakdown might still 
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be a beat phenomenon (in spite of our previous dismissal of any effect of beating 
between two different inertial modes) since the particular cavity in which we observed 
the breakdown was such that two of the inertial modes, though having different 
structure, had the same frequency. It then became natural to inquire whether surface 
tension could ‘split’ the modes, i.e. could alter the frequency of the mode with the 
more complicated structure more significantly than the mode with less complicated 
structure. If so, then one would have two modes of nearly equal frequency in the cavity, 
the resulting beat frequency hopefully coinciding with the collapse frequency of the 
free surface. Again calculations showed that surface tension was not strong enough 
to  effect the requisite frequency split. 

Only aft,er the failure of this last surmise did the thought occur to us that the 
amplitude dependence of the inertial modes (Scott 1975) might affect the two fre- 
quencies differently, i.e. ‘split’ the modes, thus giving rise to the beat phenomenon. 
Calculations presented here seem to indicate that this is indeed the mechanism for the 
multi-period free-surface collapse. 

Since there seems to be no prior publication of observations of capillary waves on a 
rotating liquid, since the interaction of inertial and capillary waves seems to have 
att’ract,ed no attention and since there seems to be no prior publication of the effects 
of an interaction between two different inertial modes, we present the observations 
and analysis here. 

2. The interaction between inertial and capillary waves v i s - h i s  the 
free-surface breakdown 

In  order t o  determine the inertial wave frequencies of the liquid in the rotor (of the 
gyrost,at) shown in figure 1 ,  we follow Stewartson (1959) and all of his assumptions 

(1) 
and write 

where q is velocity, 51 is the angular velocity, P is the reduced pressure and p is the 
densitmy. Setting q = Qest and P = pest in ( 1 )  and then solving for Q, we have 

( 2 )  

(3) 

a s p  + 251 x g = - V P / ~ ,  

Q = (251 x Vplsp - V p / p  - 45151. Vp/s2p}/s(  1 + 4Q2/s2). 

vzP + ( ~ Q / S ) ~ P P / W  = 0, 

Using this expression in the continuity equation V . Q = 0,  we have 

a partial differential equation involving the pressure p which is to be solved subject 
to appropriate boundary conditions. 

To determine the frequencies of the inertial waves, we can let the rotor have zero 
transverse velocity. Then the boundary condition is Q . n = 0, which in terms of the 
pressure p becomes, at the end faces of the cylinder, 

pp/aZ),=fc = 0. (4) 

( 5 )  

(6) 

A t  the cylinder walls, the boundary condition Q.n = 0 becomes, in terms of the 
pressure p ,  {ap/ar + ( 2 ~ / s r )  ap/ae>r=, = 0. 

r = b{l + q ( B ,  z )  est), 

At the free surface (figure l),  the equation for which we shall take as 
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the kinematic boundary condition dF/dt = 0,  where 3' = r - b{ 1 + q(0, z )  est}, yields, at  
first order in 7, 

( 7 )  

(8) 

ST = - {ap/ar + (2Q/sr )  ap/aS},=,/sb{i + ( ~ Q / S ) ~ } > .  

pest = -pQ2b2~es t+cr ( l /b  +beSta2q/8z2+ est7/b +est82y/ba62), 

The dynamical boundary condition at the free surface yields, a t  first order in 7, 

where B is the surface tension, where the second term in the parentheses is the free- 
surface curvature in the z direction and where the other terms in the parentheses give 
the free-surface curvature in the 6 direction. Differentiating (8) with respect to time 
and using ( 7 ) ,  we have, finally, as the appropriate expression for the boundary con- 
dition a t  the free surface 

( s 2 + 4 Q 2 - [ Q 2 b - ~ ( a ~ / p a z + l / p b + a ~ / b ~ p a e ~ ) ] ( a / a r + 2 ~ 2 / s r a 6 ) } p  = 0 a t  r = b. 

(9) 

A solution of (3) that satisfies (4), that has the requisite 0 dependence to allow the 
gyrostatic motion to effect the inertial oscillations and that has sufficient undetermined 
constants for the satisfaction of (5) and (9) is 

(10) p = C eiO{AJl(ar) + BY,(ar)} sin k, z ,  
i 

where A and B are constants, J,(ar) and Y,(orr) are Bessel functions and Neumann 
functions of the first order, a = (2j  + 1 )  ( n / Z c )  [ - (1 + 4Q2/s2)]$  and kj = (2 j+  l ) n / 2 c .  

Substituting (10) into (5) and (9) respectively gives 

(d /dr  + 2Qi /sr )  {AJ,(ar) + SYl(ar)}T=a = 0 

Dividing (1 1) and (1 2 )  by Q2b, using recursion relations involving the derivatives 
of the Bessel and Neumann functions and invoking the condition that A and B be 
non-zero, we get the frequency equation 

where (Jo,Jl)u = d o ( a a ) + ( 2 Q i / s -  l)J,(acc)/a 

and 

Similar expressions exist for (Yo, YJa and {Jo,Jl}b, where 6 = (B/bpQ2) k;. 
Not only does (13) yield values of s that are, of course, purely imaginary, but also, 

if we set 6 = 0 in (13)) i.e. set B = 0 ,  and let the corresponding vaIue of s be so, there 
results the frequency equation (as a function of the parameters c/a(Zj+ 1 )  and b2/a2) 
from which Stewartson (1959) determined the inertial mode frequencies. The value of 
2j  + 1 is the number of half sine waves that can be fitted between the ends of the cavity 
and 1 - b2/a2 is the fill ratio. 

The various values of the s's, i.e. the frequencies, can be calculated from the fact 
that, in (13)) 6 < 1 for our experiments; hence so is approximately a solution of the 
equation and we can write, for example, 

{Yo, Y& = ( ( 1  - 2Qi / s )  (1 +6)  + 4 + s 2 / Q 2 } ~ ( a b )  - ab( 1 +S)Y,(ab).  

s = so+As0, (14) 
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where Aso, the frequency change due to the effect of surface tension, is given by 
Newton's root approximation method as 

As0 = - G(so) (dG(so)/dso)-', 

where dG(so)ldso = {yo, Y,),,d(Jo, 4 ) a , s o / d S o  + ( J O Y  4,u,sod{Y,, %,soldso 

- (8, Y,)a,s,d{Jo, Jllb,s*ldso - {JO> Jl)h,,d(Y,, Y , ) a , , o / ~ ~ o .  (16) 

Let us now consider a cylindrical cavity that has a height-to-diameter ratio, i.e. 
a value of c l a y  of 3.08. Then from Stewartson's tables it can be shown that the liquid 
in such a cavity can support two differently structured inertial modes (the j = 1 and 
the j = 3 modes, corresponding to three and seven half sine waves) with the same 
frequency, 0.947Q. Using (15), we find that the effect of surface tension on t h e j  = 1 
mode a t  this c/a = 3.08 for a cavity containing water or low viscosity oil is different 
from the effect on t h e j  = 3 mode, but the difference is an order of magnitude too small 
to produce the observed beats. Furthermore, increasing the angular speed of the 
gyrostat theoretically increases the beat period owing to the interaction of capillary 
and inertial waves whereas experimentally the beat period is reduced. 

Since the theoretical prediction of the functional dependence of the breakdown 
period on the angular speed of the gyrostat is in the wrong direction (in addition to 
being numerically far removed from the experimental value) and since observations 
showed that the breakdown period for the oil was experimentally indistinguishable 
from that for water (the surface tension of the water was 74dynes/cm, that of the 
oil 23 dyneslcm), it would seem that surface tension is not relevant in the breakdown 
process. As an afterthought,, the negligible effect of surface tension does not seem 
physically unreasonable; for inertial waves are internal waves, whereas capillary 
waves are surface waves. 

As conclusive evidence that the wavelets are, indeed, capillary waves and not 
significantly related to the breakdown process, we mention that the addition of 
dishwasher soap (a surfactant that reduces surface tension without any comparable 
effect on the viscosity) markedly reduced the size of the wavelets and delayed their 
appearance without noticeably affecting the breakdown period. 

3. The interaction of the amplitude-modulated inertial waves vis-h-vis 
the free-surface breakdown 

I f  we are correct that the free-surface breakdown, though not surface-tension 
dominated, is still a beat phenomenon, then the liquid in cavities having height-to- 
diameter ratios c /a  of 3.045 and 3.71 1 should not exhibit free-surface breakdown. This 
follows from the fact, deducible from Stewartson's tables, that two differently 
structured inertial modes having equal frequencies cannot coexist in such cavities. 
Hence the mechanism for beating does not exist and if our conjecture is correct, there 
should be no free-surface breakdown even though capillary waves should appear. We 
confirmed this experimentally: capillary waves appeared on the free surface for each 
cavity, but no breakdown occurred until the amplitude reached 7" or 8" (compared 
with 2" or 3" for the c/a = 3.08 cavity). Furthermore, once the breakdown had occurred, 
t'he free-surface wave form did not reappear: rather, the collapsed surface, though 
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basically cylindrical, remained in a state of agitation, vastly different from the 
perfectly quiescent surface that resulted from breakdown in the c l a  = 3.08 cavity. 
This would seem to indicate that at such amplitudes the inertial wave frequency has 
changed sufficiently that the system is no longer a resonant one (Scott 1975). 

The above experimental confirmation that the inertial modes are amplitude 
dependent (owing to  the failure of the angular velocity vector of the liquid to remain 
coincident with the angular velocity vector of the rotor during large amplitude motion 
of the gyrostat, thus causing the liquid to (see) a modified cylindrical cavity) finally 
led us to  inquire whether or not such an amplitude effect on the frequency was different 
for the two equal-frequency modes of the c l a  = 3.08 cavity. If  so, we reasoned, such 
a differential effect could result in the two modes having their frequencies sufficiently 
split at the large amplitudes to  effect the beat phenomenon. Using equation (58) of 
Scott (1975) to determine the frequency shift, we find that the j = 1 mode indeed 
‘sees) a different cavity at large amplitudes from the one which the j = 3 mode 
(sees’, the resulting frequency shift being from 0.947R to 0.9394R for the j = 1 mode 
and from 0.947Q to 0.9437R for the j = 3 mode. Representing the pressure waves 
associated with these frequencies as the sum of two sine terms [see (lo)] and letting the 
frequency shift in t h e j  = 1 mode be As, and the frequency shift in the j = 3 mode be 
As,, we have a t  large amplitudes 

p N A,,1 sin (8 + (s + As,) t }  + A,=, sin (8 + (s + As,) t}. (17) 

Since the relationship between the amplitudes is AjZ1 = %O- A+, (see (3.3) of Stewart- 
son 1959)) we have, approximately, 

p N 2Aj,1 {cos &(AS, - As,) t - 0.408) sin (8 + (s + As,) t). (18) 

In (18)) the coefficient of the sinusoidal term vanishes at  to, t,, t,, t,, t,, etc., where 

&(Asl - AS,) to = ~ 0 ~ - ~ 0 * 4 0 8 ,  

&(Asl - AS,) t ,  = 277 + ~ 0 ~ - ~ 0 * 4 0 8 ,  

&(AS, - AS,) t ,  = 277 - COS-’ 0.408, 

&(As,- As,) t, = 477 - COS-~  0.408, 

%(As1 - As,) t, = 477 + c0s-~O.408, etc. 

Hence T, the major period, is given by 

T = (477 - 4 COS-’ 0.4O8)/(As1 - AS,) 

and T ,  the minor period, is given by 

T = 4 ~0s- l  0*4O8/(As1 - AS,). 

Expressions (19) and (20) yield, for the c / a  = 3.08 cavity, 

T = 5.9s) T = 3.4s for R = 300r.p.m.) 

T = 4.43s) T = 2.55s for SZ = 4000r.p.m. 

The experimental values of these periods were approximately 8 , 2 , 5  and 1 s, respect- 
ively. This reasonable agreement between theory and experiment lends credibility to 
our conjecture concerning the presence and source of the beat phenomena. 

Cavities with two different modes of equal frequency are not common. Diligently 
searching the Stewartson tables, we find that for a c l a  = 2.583 cavity 60 yo filled the 
j = 1 a n d j  = 4 modes both have frequencies of 0.98R. The large amplitude effect on 
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these shifts the j = 1 mode from 0.980 to 0.970 and the j = 4 mode from 0.980 to 
0.9750, giving major and minor breakdown periods of 5.2 and 2.83 s at 3000r.p.m. 
Again, these values axe reasonably close to the approximate experimental values 
of 7 and 2 s, respectively. 

4. Summary 
The wavelets which appear on the inner free-surface inertial wave in a rapidly 

rotating liquid partially filling an oscillating gyrostat are capillary waves, but, unlike 
the situation for capillary waves on the free surface of a liquid supporting gravity 
waves, there is negligible dynamical interaction between the inertial and capillary 
waves. 

The sensitivity of the inertial wave frequency to the geometry of the cavity is 
manifested by the fact that at  ‘large’ amplitudes of motion of the gyrostat the liquid 
no longer ‘sees’ a cylindrical cavity. This differentially shifts the frequencies, so that, 
if at small amplitudes of motion of the gyrostat two differently structured inertial 
wave modes have equal frequencies, they will not have equal frequencies at larger 
amplitudes. The combination of these two waves of slightly different frequencies can 
give rise to the phenomenon of beats, one visual consequence of which can be a two- 
period collapse of the wave form of the free surface. 
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